

Product Brief

Polar Encoder PE-MS 1.1

Main Features

- Implements multi-stage encoding algorithm for polar codes
- Supports multi-stage encoding for 16, 64, 256, 1024, 4096 and 16384 QAM
- Implements M-QAM mapper for supported constellation sizes
- Drop-in IP core
- Supports data rates in hundreds of Mb/s on standard FPGAs
- Implements log₂(M)/2 polar code construction for each level of QAM such that inphase and quadrature components coded together

General Description

Block diagram of PE-MS 1.1 is shown in Figure 1.

Figure 1: Block diagram of PE-MS 1.1.

Main programmable parameters of the IP core are listed in Table 1.

Name	Symbol	Description
Block Length	BL	Length of an each code block. BL has to be a power of 2.
Code rate	R	Number of information bits divided by BL.
Frozen Locations	FIL	Frozen index locations are read-in from a file.
Bit per Symbol	m	Each QAM symbol has m bits. The encoder has m/2 stages.
Data Width	DW	Width of the data input/output ports.

 Table 1: PE-MS 1.1Top Level programmable parameters.

Internal generic parameters of the IP core are listed in Table 2.

 Table 2: PE-MS 1.1 internal programmable parameters.

Name	Symbol	Description
Total Block Length	TBL	Length of the total code block, BL*m/2.
Constellation Size	М	M-QAM modulation for each encoder stage, 2 ^m .

The I/O ports descriptions are given in Table 3.

7	able	3:	I/O	Ports	of PE-MS 1.1	
-	avic	••	1/0	1 0115	0 1 1 110 1.1	

Pin	Sense	Port Width (bits)	Description
CLK	Input	1	<i>Clock.</i> All synchronous logic operations are triggered by rising edge of CLK.
RESET	Input	1	<i>Synchronous Reset.</i> Initializes all variables and signals to their initial state synchronously.
SYS_EN	Input	1	<i>Systematic Enable</i> . Selects standard or systematic encoding operation.
START_IN	Input	1	<i>Start Input.</i> Marks the beginning of a new data input block.
DATA_EN	Input	1	Data Enable. Marks valid input data.
DATA_IN	Input	DW	Data input. Contains frozen and information data.
SYM_I	Output	8	Channel In-phase Component. Encoder output-1
SYM_Q	Output	8	Channel Quadrature Component. Encoder output-2
DATA_OUT_VALID	Output	1	Valid Output Data. Marks valid output data.
RFD	Output	1	Ready for Data. Indicates the encoder is ready for new data input.

Performance

This section contains the performance results of PE-MS 1.1 for various core configurations.

Latency is defined as the number of rising clock edges from START_IN pulse to the following pulse of DATA_OUT_VALID.

													4,79 4,660	0.984 ns
łam	e	Value	0 ns		500 ns	1,000 ns	1,500 ns	2,000 ns	2,500 ns	3,000 ns	3,500 ns	4,000 ns	4,500	τ.
ι	CLK	0												
ų	RESET	0												
ų	SYS_EN	1												
	DATA_IN	[00,00]	0						[00,00]					
ų	DATA_EN	0												
ų	START_IN	0	.(L)										
ų	DATA_OUT_VALID	1											(\mathbf{n}
ų	RFD	1		Π										$\gamma -$
	5 LATENCY	455	0											455

Figure 2: Xilinx ISIM latency results for TBL = 128.

Throughput, maximum raw data input rate in Mbps, can be calculated as

$$R * TBL * (\frac{Fmax(MHz)}{Interval}).$$

Latency and throughput values are shown in Table 4 for particular encoder configurations.

Table 4: PE-MS 1.1 performance results for Xilinx Kintex-7 (XC7K325T-2FFG900C) FPGAKC705 evaluation kit, R = 1, DW = 2.

Generic Pa	rameters	Performance				
Μ	TBL	Latency(CC)	Throughput (Mbps)			
16	128	455	98			
10	512	2311	77			
61	192	455	147			
04	768	2311	116			
256	256	455	196			
	1024	2311	155			
1024	320	455	246			
1024	1280	2311	193			
1006	384	455	295			
4090	1536	2311	232			
1(204	448	455	344			
10384	1792	2311	271			

Resource Utilization

Synthesis and Implementation of IP Core

PE-MS 1.1 synthesized with Xilinx ISE v14.7 and Vivado 2016.1 and implemented on Xilinx Kintex-7 (XC7K325T-2FFG900C) FPGA KC705 Evaluation Kit. The synthesis and implementation results are shown in Table 5 and Table 6 respectively.

Generic Pa	Synthesis Results						
Μ	TBL	FFs	LUTs	IOBs	BRAMs	Fmax (MHz)	
16	128	67	104	27	17	349	
10	512	91	185	27	17	349	
64	192	79	121	29	18	349	
04	768	97	210	29	18	349	
256	256	85	133	31	18	349	
230	1024	103	234	31	18	349	
1024	320	89	137	33	19	349	
1024	1280	106	252	33	19	349	
4096	384	95	148	35	19	349	
	1536	113	278	35	19	349	
16384	448	99	148	37	20	349	
	1792	118	298	37	20	349	

Table 5: PE-MS 1.1 synthesis results for Xilinx Kintex-7 (XC7K325T-2FFG900C) FPGAKC705 evaluation kit, R = 1, DW = 2.

Table 6: PE-MS 1.1 implementation results for Xilinx Kintex-7 (XC7K325T-2FFG900C)FPGA KC705 evaluation kit, R = 1, DW = 2.

Gene Param	eric leters	Implementation Results							
М	TBL	FFs	LUTs	Slices	IOBs	18k BRAMs	36k BRAMs	Fmax(MHz)	
16	128	75	89	54	27	2	16	317	
10	512	91	148	78	27	2	16	308	
61	192	79	94	53	29	3	16	313	
04	768	97	174	186	29	3	16	292	
256	256	85	104	73	31	4	16	324	
230	1024	103	193	92	31	4	16	308	
1024	320	89	109	69	33	5	16	300	
1024	1280	106	210	118	33	5	16	306	
4096	384	95	116	79	35	6	16	276	
	1536	113	236	139	35	6	16	278	
16384	448	99	124	88	37	7	16	291	
10364	1792	118	265	141	37	7	16	299	

Power Consumption

Power consumption of PE-MS 1.1 on Xilinx Artix FPGA is shown in Figure 3. For 16384-QAM, PE-MS IP core has total 0.424 W power consumption, which consists of 0.133 W static and 0.291 W dynamic power consumption. PE-MS uses much more memory than the logic such that 47% of dynamic power usage caused by BRAM and only 2% power usage caused by logic. The power usage of 256-QAM and 1634-QAM results is almost the same such that the complexity of encoder scales well with the constellation size. In addition to that, 256-QAM implementation has 129 Mb/s; 16384-QAM implementation has 219 Mb/s throughput. Therefore, the power consumption is calculated as 1,28 nJ/bit for 256-QAM and 1,42 nJ/bit when the I/O power usage is excluded.

Figure 3: 256-QAM (1024, 512) and 16384-QAM (1792,869) PE-MS power consumption on Xilinx Artix FPGA.

Implementation Overview on FPGA

Figure 4: 256-QAM (1024, 512) and 16384-QAM (1792,869) PE-MS implementation overview on Xilinx Artix FPGA.

The implementation overview of PE-MS is shown in Figure 4. 16384-QAM implementation

uses more resources and area than the 256-QAM implementation since the block size and the constellation size increases from 1024 to 1792 and 256 to 16384 respectively.

Further Information

For further information on product technical specifications, customization to specific applications, sales terms and pricing, please contact info@polaran.com.

Date	Version	Revision				
30/11/2015	1.0	Initial release.				
04/08/2016	1 1	Spelling mistakes are corrected.				
04/00/2010	1.1	Implementation overview is added.				

PE-NE Revision History